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A general method is proposed for predicting the asymptotic percolation threshold of networks with bottle-
necks, in the limit that the subnet mesh size goes to zero. The validity of this method is tested for bond
percolation on filled checkerboard and “stack-of-triangle” lattices. Thresholds for the checkerboard lattices of
different mesh sizes are estimated using the gradient percolation method, while for the triangular system they
are found exactly using the triangle-triangle transformation. The values of the thresholds approach the
asymptotic values of 0.64222 and 0.53993, respectively, as the mesh is made finer, consistent with a direct
determination based upon the predicted critical corner-connection probability.
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I. INTRODUCTION

Percolation concerns the formation of long-range connec-
tivity in random systems �1�. It has a wide range of applica-
tion in problems in physics and engineering, including such
topics as conductivity and magnetism in random systems,
fluid flow in porous media �2�, epidemics and clusters in
complex networks �3�, analysis of water structure �4�, and
gelation in polymer systems �5�. To study this phenomenon,
one typically models the network by a regular lattice made
random by independently making sites or bonds occupied
with probability p. At a critical threshold pc, for a given
lattice and percolation type �site, bond�, percolation takes
place. Finding that threshold exactly or numerically to high
precision is essential to studying the percolation problem on
a particular lattice, and has been the subject of numerous
works over the years �recent works include Refs. �6–26��.

In this paper we investigate the percolation characteristics
of networks with bottlenecks. That is, we consider models in
which we increase the number of internal bonds within a
subnet while keeping the number of contact points between
subnets constant. We want to find how pc depends upon the
mesh size in the subnets and, in particular, how it behaves as
the mesh size goes to zero. Studying such systems should
give insight on the behavior of real systems with bottlenecks,
such as traffic networks, electric power transmission net-
works, and ecological systems. It is also interesting from a
theoretical point of view because it interrelates the percola-
tion characteristics of the subnet and the entire network.

An interesting class of such systems includes lattices with
an ordered series of vacated areas within them. Examples
include the filled checkerboard lattices �Fig. 1� and the
“stack-of-triangles” �Fig. 2�. The latter can be built by parti-
tioning the triangular lattice into triangular blocks of dimen-
sion L, and alternately vacating those blocks. These internal
blocks of length L correspond to the subnets, which contact
other subnets through the three contact points at their cor-
ners. The checkerboard lattice is the square-lattice analog of

the stack-of-triangles lattice, where subnets are L�L square
lattices which contact the other subnets via four contact
points. Note, for the stack-of-triangles subnets, we also use
the L�L designation, here to indicate L bonds on the base
and the sides.

The problem of finding the bond percolation threshold can
be solved exactly for the stack-of-triangles lattice because it
fits into a class of self-dual arrangements of triangles, and the
triangle-triangle transformation �a generalization of the star-
triangle transformation� can be used to write down equations
for its percolation threshold �27,28�. This approach leads to
an algebraic equation which can be solved using numerical
root-finding methods. However, due to lack of self-duality in
the filled checkerboard lattices, no exact solution can be ob-
tained for their thresholds.

It is of interest and of practical importance to investigate
the limiting behavior of systems with subnets of an infinite
number of bonds, i.e., systems where the size of subnets is
orders of magnitude larger than the size of a single bond in
the system or, equivalently, where the mesh size of the lattice
compared to the subnet size becomes small. Due to reduced
connectivity, these systems will percolate at a higher occu-
pation probability than a similar regular lattice. The limiting
percolation threshold for infinite subnets is counterintuitively
nonunity, and is argued to be governed by the connectedness
of contact points to the infinite percolating clusters within
subnets. This argument leads to a simple criterion linking the
threshold to the probability that the corners connect to the
giant cluster in the center of the subnet.

In this work, the limiting threshold value is computed for
bond percolation on the stack-of-triangles and filled check-
erboard lattices using this new criterion. Percolation thresh-
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olds are also found for a series of lattices of finite subnet
sizes. For the stack-of-triangles lattices, most percolation
thresholds are evaluated analytically using the triangle-
triangle transformation method, while for filled checkerboard
lattices, the gradient percolation method �29� is used. The
limiting values of 0.53993 and 0.64222 are found for perco-
lation thresholds of stack-of-triangles and checkerboard lat-
tices, respectively, which are both in good agreement with
the values extrapolated for the corresponding lattices of finite
subnet sizes.

We note that there are some similarities between this work
and studies done on the fractal Sierpiński gaskets �triangular�
�30� and carpets �square�, but in the case of the Sierpiński
models, the subnets are repeated in a hierarchical fashion
while here they are not. For the Sierpiński gasket, which is
effectively all corners, the percolation threshold is known to
be 1 �31�. For Sierpiński gaskets of a finite number of gen-
erations, the formulas for the corner connectivities can be
found exactly through recursion �32�, while here they cannot.
Recently another hierarchical model with bottlenecks, the so-
called Apollonian networks, which are related to duals of
Sierpinski networks, has also been introduced �33�. In this
model, the percolation threshold goes to zero as the system
size goes to infinity.

II. THEORY

Let p be the probability that a bond in the system is oc-
cupied. Consider a network with subnets of infinitely fine
mesh, each individually percolating �in the sense of forming
“infinite” clusters but not necessarily connecting the corners�
at pc,s, and denote the overall bond percolation threshold of
the entire network to be pc,n. It is obvious that pc,s� pc,n, due
to reduced connectivity in the entire network compared to
connectivity in individual subnets. For pc,s� p� pc,n, an in-
finite cluster will form within each subnet with probability 1.
However, the entire network will not percolate, because a
sufficient number of connections has not yet been established
between the contact points at the corners and central infinite
clusters.

Now we construct an auxiliary lattice by connecting the
contact points to the center of each subnet, which represents
the central infinite cluster contracted into a single site. The
occupation probability of a bond on this auxiliary lattice is
the probability that the contact point is connected to the cen-
tral infinite cluster of the subnet. Percolation of this auxiliary
lattice is equivalent to the percolation of the entire network.
That is, if this auxiliary lattice percolates at a threshold pc,a,
the percolation threshold of the entire network will be deter-
mined by

P�,corner�pc,n� = pc,a, �1�

where P�,corner�p� gives the probability that the corner of the
subnet is connected to the central infinite cluster given that
the single occupation probability is p. In general no analyti-
cal expression exists for P�,corner�p�, even for simple lattices
such as the triangular and square lattices, and P�,corner�p�
must be evaluated by simulation.

A. Stack-of-triangles lattice

Figure 3 shows a limiting stack-of-triangles lattice where
each shaded triangle represents a subnet of infinitely many
bonds. The contact points are the corners of the triangular
subnets. As shown in Fig. 3, the auxiliary lattice of the stack-
of-triangles lattice is the honeycomb lattice, which percolates
at pc,a=1−2 sin�� /18��0.652704 �34�. Thus the asymptotic
percolation threshold pc,n of the stack-of-triangles will be
determined by

P�,corner�pc,n� = 1 − 2 sin
�

18
. �2�

Because the stack-of-triangles lattice is made up of triangular
cells in a self-dual arrangement, its percolation threshold can
be found exactly using the triangle-triangle transformation
�27,28�. Denoting the corners of a single triangular subnet
with A, B, and C, the percolation threshold of the entire
lattice is determined by the solution of the following equa-
tion:

P�ABC� = P�ABC� , �3�

where P�ABC� is the probability that A, B, and C are all
connected, and P�ABC� is the probability that none of them
are connected. Equation �3� gives rise to an algebraic equa-
tion which can be solved for the exact percolation threshold
of the lattices of different subnet sizes.

B. Filled checkerboard lattice

Unlike the stack-of-triangles lattice, there is no exact so-
lution for percolation threshold of the checkerboard lattice

FIG. 2. Stack-of-triangles lattice with subnets of finite sizes.

FIG. 3. �Color online� Stack-of-triangles lattice and its auxiliary
lattice. The filled blue �dark� triangles represent the subnet, and the
yellow honeycomb lattice represents the effective auxiliary lattice.
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for finite subnets because no duality argument can be made
for such lattices. However once again an auxiliary lattice
approach can be used to find a criterion for the asymptotic
value of percolation threshold. Figure 4 depicts the corre-
sponding auxiliary lattice for a checkerboard lattice, which is
simply the square lattice with double bonds in series. This
lattice percolates at pc,a=1 /�2�0.707107. Thus for the in-
finite subnet pc,n will be determined by

P�,corner�pc,n� =
1
�2

. �4�

It is interesting to note that there exists another regular
lattice—the “martini” lattice—for which the bond threshold
is also exactly 1 /�2 �9�. However, that lattice does not ap-
pear to relate to a network construction as the double-square
lattice does.

III. METHODS

A. Percolation threshold of systems of finite-sized sub-nets

For the checkerboard lattice, we estimate the bond perco-
lation thresholds using the gradient percolation method �29�.
In this method, a gradient of occupation probability is ap-
plied to the lattice, such that bonds are occupied according to
the local probability determined by this gradient. A self-
avoiding hull-generating walk is then made on the lattice
according to the rule that an occupied bond will reflect the
walk while a vacant bond will be traversed by the walk. For
a finite gradient, this walk can be continued infinitely by
replicating the original lattice in the direction perpendicular
to the gradient using periodic boundary conditions. Such a
walk will map out the boundary between the percolating and
nonpercolating regions, and the average value of occupation
probability during the walk will be a measure of the perco-
lation threshold. Because all bonds are occupied or vacated
independent of each other, this average probability can be
estimated as �35�

pc =
Nocc

Nocc + Nvac
. �5�

It is particularly straightforward to implement this algorithm
to bond percolation on a square lattice, and the checkerboard
lattice can be simulated by making some of the square-lattice
bonds permanently vacant. Walks are carried out in a
horizontal-vertical direction and the original lattice is rotated
45°.

We applied this approach to checkerboard lattices of dif-
ferent block sizes. Figures 5 and 6 show the corresponding
setups for lattices with 2�2 and 4�4 vacancies, where the
lattice bonds are represented as dashed diagonal lines and
solid horizontal and vertical lines show where the walk goes.
Circles indicate the centers of permanently vacant bonds. It
should be emphasized that permanently vacated bonds are
not counted in Eq. �5� even if they are visited by the walk.

The percolation threshold of stack-of-triangles lattices of
finite subnet size were calculated using Eq. �3�. If the occu-

FIG. 4. �Color online� Auxiliary lattice of the checkerboard lat-
tice. The blue �dark� colored areas represent the subnets and the
double-bond square lattice �diagonals� represents the auxiliary
lattice.

FIG. 5. Representation of checkerboard lattices for simulation
with the gradient method. The original bond lattice is represented
by dashed diagonal lines, while lattice on which the walk goes is
vertical and horizontal. Open circles mark bonds that are perma-
nently vacant.

FIG. 6. Checkerboard lattice with 4�4 vacancies, with a de-
scription the same as in Fig. 5.
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pation probability is p and q=1− p, one can express P�ABC�
and P�ABC� as

P�ABC� = �
i=0

3n�n+1�/2

��n,i�piq3n�n+1�/2−i, �6�

P�ABC� = �
i=0

3n�n+1�/2

��n,i�piq3n�n+1�/2−i, �7�

where n denotes the number of bonds per side of the subnet,
��n , i� denotes the number of configurations of an n�n tri-
angular block with precisely i occupied bonds where A, B,
and C are connected to each other and ��n , i� denotes the
number of configurations, where none of these points are
connected. There appears to be no closed-form combinatorial
expression for ��n , i� and ��n , i�, and we determined them
by exhaustive search of all possible configurations.

B. Estimation of P�,corner

As mentioned in Section II, the asymptotic value of per-
colation threshold pc,n can be calculated using Eq. �4�. How-
ever there is no analytical expression for P�,corner�p�, hence it
must be characterized by simulation. In order to do that, the
size distribution of clusters connected to the corner must be
found for different values of p� pc,s. Cluster sizes are de-
fined in terms of the number of sites in the cluster.

In order to isolate the cluster connected to the corner, a
first-in-first-out �FIFO� Leath or growth algorithm is used
starting from the corner. In the FIFO algorithm, the neigh-
bors of every unvisited site are investigated before going to
neighbors of the neighbors, so that clusters grow in a circular
front. Compared to last-in-first-out algorithm used in recur-
sive programming, this algorithm performs better for p
	 pc,s because it explores the space in a more compact way.

At each run, the size of the cluster connected to the corner
is evaluated using the FIFO growth algorithm. In order to get
better statistics, clusters with sizes between 2i and 2i+1−1 are
counted to be in the ith bin. Because simulations are always
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FIG. 7. Cluster size distribution for clusters originating from the
corner of triangular lattice at �a� p=0.40 and �b� p=0.55, after 104

independent runs.
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FIG. 8. Gradient percolation data for checkerboard lattices with �a� 2�2, �b� 4�4, and �c� 8�8 subnet sizes. Squares correspond to the
bond percolation thresholds estimated for different values of probability gradients; error bars are smaller than the symbol size.
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run on a finite system, there is an ambiguity on how to define
the infinite cluster. However, when p	 pc,s, the infinite clus-
ter occupies almost the entire lattice, and the finite-size clus-
ters are quite small on average. This effect becomes more
and more profound as p increases, and the expected number
of clusters in a specific bin becomes smaller and smaller.
Consequently, larger bins will effectively contain no clusters,
except the bin corresponding to cluster sizes comparable to
the size of the entire system. Thus there is no need to set a
cutoff value for defining an infinite cluster. Figure 7 depicts
the size distribution of clusters connected to the corner ob-
tained for 1024�1024 triangular lattice at �a� p=0.40 and
�b� p=0.55 after 104 independent runs. As it is observed,
there is a clear gap between bins corresponding to small
clusters and the bin corresponding to the spanning infinite
cluster even for small values of p, which clearly demon-
strates that the largest nonempty bin corresponds to infinite
percolating clusters connected to the corner. The fraction of
such clusters connected to the corner is an estimate of
P�,corner�p�.

TABLE I. Percolation threshold for checkerboard lattices of dif-
ferent subnet sizes.

Subnet size Estimated pc,n

1�1 0.5a

2�2 0.596303
0.000001b

4�4 0.633685
0.000009b

8�8 0.642318
0.000005b

16�16 0.64237
0.00001b

32�32 0.64219
0.00002b

] ]

� 0.642216
0.00001c

aExact result.
bFrom gradient percolation simulations.
cFrom corner simulations using Eq. �4�.

TABLE II. Exact enumeration polynomials and pc= pc,n for the stack-of-triangles lattices.

Subnet 1�1 �simple triangular lattice� 2�2 �3 “up” triangles or nine bonds per subnet�

p3= P�ABC� p3+3p2q 9p4q5+57p5q4+63p6q3+33p7q2+9p8q+ p9

p2= P�ABC̄� pq2 p2q7+10p3q6+32p4q5+22p5q4+7p6q3+ p7q2

p0= P�ABC� �p+q�3− p3−3p2 �p+q�9− p3−3p2

pc 0.34729635533 0.47162878827

p0�pc�= p3�pc� 0.27806614328 0.28488908000

p2�pc� 0.14795590448 0.14340728000

Subnet 3�3 �6 “up” triangles or 18 bonds per subnet�

p3= P�ABC� 29p6q12+468p7q11+3015p8q10+9648p9q9+16119p10q8+17076p11q7+12638p12q6

+6810p13q5+2694p14q4+768p15q3+150p16q2+18p17q+ p18

p2= P�ABC̄� p3q15+21p4q14+202p5q13+1125p6q12+3840p7q11+7956p8q10+9697p9q9

+7821p10q8+4484p11q7+1879p12q6+572p13q5+121p14q4+16p15q3+ p16q2

p0= P�ABC� �p+q�18− p3−3p2

pc 0.50907779266

p0�pc�= p3�pc� 0.28322276251

p2�pc� 0.14451815833

Subnet 4�4 �10 “up” triangles or 30 bonds per subnet�

p3= P�ABC� 99p8q22+2900p9q21+38535p10q20+305436p11q19+1598501p12q18

+5790150p13q17+14901222p14q16+27985060p15q15+39969432p16q14

+45060150p17q13+41218818p18q12+31162896p19q11+19685874p20q10

+10440740p21q9+4647369p22q8+1727208p23q7+530552p24q6+132528p25q5

+26265p26q4+3976p27q3+432p28q2+30p29q+ p30

p2= P�ABC̄� p4q26+36p5q25+613p6q24+6533p7q23+48643p8q22+267261p9q21

+1114020p10q20+3563824p11q19+8766414p12q18+16564475p13q17

+24187447p14q16+27879685p15q15+25987202p16q14+19980934p17q13

+12843832p18q12+6950714p19q11+3170022p20q10+1212944p21q9

+385509p22q8+100140p23q7+20744p24q6+3300p25q5+379p26q4+28p27q3+ p28q2

p0= P�ABC� �p+q�30− p3−3p2

pc 0.52436482243

p0�pc�= p3�pc� 0.28153957013

p2�pc� 0.14564028658
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In the simulations, we used the four-offset shift-register
random-number generator R�471,1586,6988,9689� de-
scribed in Ref. �36�.

IV. RESULTS AND DISCUSSION

A. Gradient percolation data

The gradient percolation method was used to estimate the
bond percolation threshold of checkerboard lattices of five
different subnet sizes, i.e., 2�2, 4�4, 8�8, 16�16, and
32�32. For each lattice, six values of the gradient were
used, and simulations were run for 1010 to 1012 steps for each
gradient value in order to assure that the estimated percola-
tion thresholds are accurate to at least five significant digits.
The gradient was applied at an angle of 45° relative to the
original lattice. Figures 8�a�–8�c� depict typical simulation
results. Measured percolation thresholds for finite gradients
were extrapolated to estimate the percolation threshold as L
→�. Our simulations show that pc fits fairly linearly when
plotted against 1 /L. Table I gives these estimated percolation
thresholds.

B. Percolation threshold of the stack-of-triangles lattice

As mentioned in Secs. II A and III A, the percolation
threshold of stack-of-triangles lattice can be determined by
Eq. �3�. Table II summarizes the corresponding polynomial
expressions and their relevant roots for lattices having 1, 2,
3, and 4 triangles per edge. These polynomials give the
��n , i� and ��n , i� in Eqs. �6� and �7� for n=1,2 ,3 ,4 and i

=0,1 , . . . ,3n�n+1� /2. We show p0= P�ABC�, p2= P�ABC̄�
�the probability that a given pair of vertices are connected
together and not connected to the third vertex�, and p3
= P�ABC�. These quantities satisfy p0+3p2+ p3=1. Then we
use Eq. �3� to solve for pc,n numerically.

We also show in Table II the values of p0, p2 and p3
evaluated at the pc,n. Interestingly, as n increases, p0 at first
increases somewhat but then tends back to its original value
at n=1, reflecting the fact that the connectivity of the infi-
nitely fine mesh triangle is identical to that of the critical
honeycomb lattice, which is identical to the connectivity of
the simple triangular lattice according to the usual star-
triangle arguments.

It is not possible to perform this exact enumeration for
larger subnets, so we used gradient percolation method to
evaluate pc for 5�5. �To create the triangular bond system
on a square bond lattice, alternating horizontal bonds are
made permanently occupied.� The final threshold results are
summarized in Table III.

C. Estimation of P�,corner(p)

1. Square lattice

The cluster growth algorithm was used to estimate
P�,corner�p� for different values of p. Simulations were run on
a 2048�2048 square lattice. For each value of p�1 /2, 105

independent runs were performed and P�,corner was estimated
by considering the fraction of clusters falling into the largest
nonempty bin as described in Sec. III B. Figure 9 demon-

strates the resulting curve for the square lattice. In order to
solve Eq. �4�, a cubic spline with natural boundary condi-
tions was used for interpolation, and an initial estimate of
pc,n was obtained to be 0.6432. The standard deviation of
P�,corner�p� scales as O�1 /�N� where N is the number of
independent simulation used for its estimation, so that N
=105 will give us an accuracy in P�,corner�p� of about two
significant figures.

In order to increase the accuracy in our estimate, further
simulations were performed at the vicinity of p=0.6432 for
N=1010 trials with a lower cutoff size, and pc,n was found to
be 0.642216
0.00001. This number is in good agreement
with percolation thresholds given in Table I. Note that pc,n
for the 16�16 subnet checkerboard lattice actually over-
shoots the value 0.642216 for the infinite subnet and then
drops to the final value. This nonmonotonic behavior is sur-
prising at first and presumably is due to some interplay be-
tween the various corner connection probabilities that occurs
for finite system. At the threshold pc,n=0.642216, we found
that the number of corner clusters containing s sites for large
s behaves in the expected way for supercritical clusters �1�
ns�a exp�−bs1/2� with ln a=−7.0429 and b=−0.8177.

2. Triangular lattice

The cluster growth algorithm was applied to find the size
distribution of clusters connected to the corner of a 1024
�1024 triangular lattice. For each value of p, 104 indepen-

TABLE III. Percolation threshold for stack-of-triangles lattices
of different subnet sizes.

Subnet size Estimated pc

1�1 0.347296355a

2�2 0.471628788a

3�3 0.509077793a

4�4 0.524364822a

5�5 0.5315976
0.000001b

] ]

� 0.53993
0.00001c

aFrom Eq. �3� using exact expressions for p0 and p3 from Table II.
bFrom gradient simulation.
cCorner simulation using Eq. �2�.
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FIG. 9. P�,corner�p� for the square lattice.
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dent runs were performed and P�,corner�p� was evaluated.
Figure 10 depicts the results. The root of Eq. �2� was deter-
mined by cubic spline to be around 0.539. Further simula-
tions were performed around this value with N=1010 runs for
each p, yielding pc,n=0.539933
0.00001. This value is also
in good agreement with values given in Table II and shows
fast convergence as subnet size increases.

V. DISCUSSION

We have shown that the percolation threshold of checker-
board and stack-of-triangle systems approach values less
than 1 as the mesh spacing in the subnets goes to zero. In
that limit, the threshold can be found by finding the value of
p such that the probability a corner vertex is connected to the
infinite cluster P�,corner equals 1 /�2 and 1–2 sin�� /18�, re-
spectively, based upon the equivalence with the double-bond
square and bond honeycomb lattices. The main results of our
analysis and simulations are summarized in Tables I and III.

For the case of the checkerboard, we notice a rather inter-
esting and unexpected situation in which the threshold pc,n
slightly overshoots the infinite-subnet value and then de-
creases as the mesh size increases. The threshold here is
governed by a complicated interplay of connection probabili-

ties for each square, and evidently for intermediate sized
systems it is somewhat harder to connect the corners than for
larger ones, and this leads to a larger threshold. In the case of
the triangular lattice, where there are fewer connection con-
figurations between the three vertices of one triangle
�namely, just p0, p2, and p3�, the value of pc,n appears to
grow monotonically.

To illustrate the general behavior of the systems, we show
a typical critical cluster for the 8�8 checkerboard system in
Fig. 11. It can be seen that the checkerboard squares the
cluster touches are mostly filled, since the threshold pc,n
=0.642318 is so much larger than the square lattice’s thresh-
old pc,s=0.5.

In Fig. 12 we show the average density of “infinite”
�large� clusters in a single 64�64 square at the checkerboard
criticality of pc,n=0.642216, in which case the density drops
to 1 /�2 at the corners. In Fig. 13 we show the corresponding
densities conditional on the requirement that the cluster si-
multaneously touches all four corners, so that the density
now goes to 1 at the corners and drops to a somewhat lower
value in the center because not every site in the system be-
longs to the spanning cluster. Similar plots can be made of

FIG. 11. A particular realization of the 8�8 checkerboard lat-
tice at its critical point pc,n=0.642318 �as given in Table I�, showing
in black the sites wetted by the largest cluster. The total lattice is
128�128 sites, with periodic boundary conditions.

FIG. 12. �Color online� Average density of the infinite �largest�
cluster in a 64�64 square, at the checkerboard critical point pc,n

=0.642216. At the corners the probability drops to 1 /�2=0.707
according to Eq. �4�.

FIG. 13. �Color online� Average density of clusters that simul-
taneously touch all four corners at the checkerboard criticality
pc,n=0.642216 for a single 64�64 square.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Occupation Probability

P
∞

,c
or

ne
r

FIG. 10. P�,corner�p� for the triangular lattice.
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clusters touching 1, 2, or 3 corners. At the subnet critical
point pc,s, the first two cases can be solved exactly and sat-
isfy a factorization condition �37,38�, but this result does not
apply at the higher pc,n.

The ideas discussed in this paper apply to any system with
regular bottlenecks. Another example is the kagomé lattice
with the triangles filled with a finer-mesh triangular lattice;
this system is studied in Ref. �39�.
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